WebDec 19, 2024 · scaler = StandardScaler () df = scaler.fit_transform (df) In this example, we are going to transform the whole data into a standardized form. To do that we first need to create a standardscaler () object and then fit and transform the data. Example: Standardizing values Python import pandas as pd from sklearn.preprocessing import … WebApr 13, 2024 · 测试分类器. 在完成训练后,我们可以使用测试集来测试我们的垃圾邮件分类器。. 我们可以使用以下代码来预测测试集中的分类标签:. y_pred = classifier.predict (X_test) 复制代码. 接下来,我们可以使用以下代码来计算分类器的准确率、精确率、召回率 …
python - How to Use StandardScaler and
WebJul 5, 2024 · According to the syntax, the fit_transform method of a StandardScaler instance can take both a feature matrix X, and a target vector y for supervised learning problems. However, when I apply it, the method returns only a single array. Webfrom sklearn.preprocessing import StandardScaler sc = StandardScaler () X = sc.fit (X) X = sc.transform (X) Or simply from sklearn.preprocessing import StandardScaler sc = StandardScaler () X_std = sc.fit_transform (X) Case … css on icons
How and why to Standardize your data: A python tutorial
Webfit_transform和transform的区别就是前者是先计算均值和标准差再转换,而直接transform则是用之前数据计算的参数进行转换。换句话说,如果最先前没有fit,即没有 … Webfrom sklearn.preprocessing import StandardScaler #importing the library that does feature scaling sc_X = StandardScaler () # created an object with the scaling class X_train = sc_X.fit_transform (X_train) # Here we fit and transform the X_train matrix X_test = sc_X.transform (X_test) machine-learning python scikit-learn normalization Share WebMay 26, 2024 · from sklearn.preprocessing import StandardScaler import numpy as np # 4 samples/observations and 2 variables/features X = np.array ( [ [0, 0], [1, 0], [0, 1], [1, 1]]) # the scaler object (model) scaler = StandardScaler () # fit and transform the data scaled_data = scaler.fit_transform (X) print (X) [ [0, 0], [1, 0], [0, 1], [1, 1]]) earls hall wind farm